
Демоверсия ПРВ по физике 8 класс

1.

При купании новорождённого ребёнка температура воды в ванне должна находиться в пределах от 36 °C до 38 °C. Определите цену деления того термометра, с помощью которого молодая мама сможет убедиться, что температура воды в ванне подходит для купания малыша. Ответ дайте в °C.

Решение. Третий термометр не подходит, т. к. у него предел измерения 10 °C. Найдем цену

$$c_1 = \frac{30 - 20}{5} = 2 \, {}^{\circ}C, c_2 = \frac{20 - 10}{4} = 2,5 \, {}^{\circ}C.$$

деления первых двух термометров: измерения даст первый термометр.

Ответ: 2.

2.

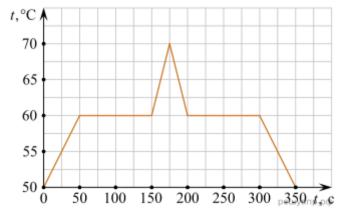
В минуту опасности некоторые головоногие выбрасывают перед собой «чернильную бомбу» — струю тёмноокрашенной жидкости. «Чернила» расплываются в воде густым «облаком», и под его прикрытием моллюск уплывает. Однако через некоторое время вода становится прозрачной. Какое физическое явление иллюстрирует рассеивание этих «чернил»? Объясните это явление.

Решение. 1. Диффузия.

2. Молекулы «чернил» перемешиваются с молекулами воды (проникают в промежутки между молекулами воды).

3.

Маша крепко зажала в кулак льдинку массой 0,03 кг, температура которой была равна 0 °С. Через некоторое время льдинка растаяла. Какое количество теплоты отдала ладонь Маши льду, если его удельная теплота плавления 330 000 Дж/кг? Ответ запишите в джоулях.


Решение. Количество теплоты, полученное льдинкой при плавлении при температуре плавления, определяется формулой

$$Q = m\lambda = 0.03 \cdot 330000 = 9900$$
 Дж.

Ответ: 9900.

4.

При проведении научных исследований образец некоторого вещества сначала нагревали, а затем охлаждали. На рисунке представлен график зависимости температуры этого образца от времени. Какое количество теплоты потребовалось для того, чтобы полностью расплавить исследуемый образец вещества, если первоначально он находился в твёрдом состоянии, и за каждую секунду к образцу подводилось количество теплоты, равное 0,7 кДж? Ответ дайте в кДж.

Решение. Из графика следует, что плавление происходило на втором участке, т. к. при плавлении температура тела постоянна. Процесс плавления продолжался в течение 100 с, следовательно, потребовалось

$$Q = 100 \text{ c} \cdot 0.7 \text{ кДж} = 70 \text{ кДж}.$$

Ответ: 70.

5.

За 0,5 мин работы в электрической лампе была израсходована энергия 900 Дж. Известно, что через лампу протекает ток силой 0,5 А. Найдите напряжение, под которым работает лампа. *Ответ дайте в вольтах*.

Решение. Расход энергии E в единицу времени t есть мощность W лампы:

$$W = \frac{E}{t}.$$

Электрическая мощность также зависит от силы тока I и напряжения U как

$$W = U \cdot I$$
.

Объединив два выражения, получим

$$\frac{E}{t} = U \cdot I,$$

откуда выражается U:

$$U = \frac{E}{I \cdot t}.$$

Переводим минуты в секунды: 0,5 мин = 30 сек и подставляем исходные данные в формулу:

$$U = \frac{900}{30 \cdot 0.5} \text{ B} = 60 \text{ B}.$$

Ответ: 60 В.

6.

На сколько больше теплоты выделится при полном сгорании бензина массой 2кг, чем при сгорании дизельного топлива той же массы? Удельная теплота сгорания бензина $46 \cdot 10^6 \text{Дж/кг}$, удельная теплота сгорания дизельного

топлива $42,7\cdot 10^6$ Дж/кг. Ответ дайте в МДж.

Решение.
$$m_1 = m_2 = 2$$
кг;

$$q_1 = 46 \cdot 10^6 Дж/кг;$$

$$q_2 = 42,7 \cdot 10^6$$
Дж/кг;

$$Q_1 = q_1 \cdot m_1 = 46 \cdot 10^6 \text{Дж/кг} \cdot 2 \text{кг} = 92 \text{МДж}.$$

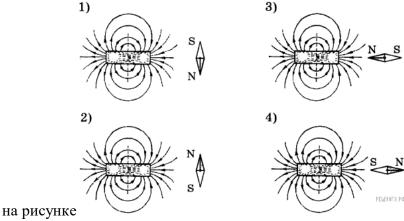
$$Q_2 = q_2 \cdot m_2 = 42,7 \cdot 10^6 \text{Дж/кг} \cdot 2 \text{кг} = 85,4 \text{МДж}.$$

$$Q_1 - Q_2 = 92$$
МДж $-85,4$ МДж $=6,6$ МДж.

Ответ: 6,6.

Твёрдые тела		
Вещество	Температура плавления, °С	Удельная теплоемкость, Дж/кг·°С
Алюминий	660	920
Лёд	0	2100
Медь	1083	380
Олово	232	250
Свинец	327	140
Серебро	960	250
Сталь	1400	500

Кузнецу нужно разогреть кусок стали массой 0,5 кг до температуры плавления при температуре воздуха 20 °C. Какое количество теплоты ему потребуется? Ответ дайте в килоджоулях.


Решение.

Дано:	Решение:
m = 0,5 кг	$Q = mc\Delta T = 0.5 \text{ кг} \cdot 500 \text{ Дж/кг} \cdot 1380 \text{ °C} = 0.5 \text{ кг} \cdot 500 \text{ Дж/кг} \cdot 1380 \text{ °C} = 0.5 \text{ кг} \cdot 500 \text{ Дж/кг} \cdot 1380 \text{ °C} = 0.5 \text{ кг} \cdot 500 \text{ Дж/кг} \cdot 1380 \text{ °C} = 0.5 \text{ кг} \cdot 500 \text{ Дж/кг} \cdot 1380 \text{ °C} = 0.5 \text{ кг} \cdot 500 \text{ Дж/кг} \cdot 1380 \text{ °C} = 0.5 \text{ кг} \cdot 500 \text{ Дж/кг} \cdot 1380 \text{ °C} = 0.5 \text{ кг} \cdot 500 \text{ Дж/кг} \cdot 1380 \text{ °C} = 0.5 \text{ кг} \cdot 500 \text{ Дж/кг} \cdot 1380 \text{ °C} = 0.5 \text{ кг} \cdot 500 \text{ Дж/кг} \cdot 1380 \text{ °C} = 0.5 \text{ кг} \cdot 500 \text{ Дж/кг} \cdot 1380 \text{ °C} = 0.5 \text{ kr} \cdot 500 \text{ Дж/кг} \cdot 1380 \text{ °C} = 0.5 \text{ kr} \cdot 500 \text{ Дж/кг} \cdot 1380 \text{ °C} = 0.5 \text{ kr} \cdot 500 \text{ Дж/кг} \cdot 1380 \text{ °C} = 0.5 \text{ kr} \cdot 500 \text{ Дж/кг} \cdot 1380 \text{ °C} = 0.5 \text{ kr} \cdot 500 \text{ Jw/kr} \cdot 1380 \text{ °C} = 0.5 \text{ kr} \cdot 1380 \text{ °C}$
$\Delta T = 1400 - 20 = 1380$ °C	$= 345000 \ Дж = 345 \ кДж.$
$c = 500 \ Дж/(кг \cdot ^{\circ}C)$	
Найти:	
Q	

Ответ: 345.

8.

Правильное положение магнитной стрелки в магнитном поле постоянного магнита изображено

- 1) 1
 - 2) 2
 - 3) 3
 - 4) 4

Решение. Магнитные линии выходят из северного полюса магнита и входят в южный. Одноимённые полюса отталкиваются, разноимённые притягиваются. Следовательно, правильной является картинка 3.

Правильный ответ указан под номером 3.

Археологи обнаружили топор неандертальца, состоящий из чудом сохранившейся деревянной ручки и каменного тесла. Плотность дерева равна 600 кг/м³, объём ручки 12 дм³. Известно, что масса деревянной ручки составляет 1/6 всей массы, а объём ручки — половину всего объёма.

- 1) Какую массу имеет деревянная ручка и каменное тесло? Ответ дайте с точностью до десятых для массы ручки и с точностью до целых для массы тесла.
 - 2) Чему равна плотность камня? Ответ дайте с точностью до целых.

Ответ: 1) масса ручки кг масса тесла кг 2) плотность кг/м³. **Решение.** 1. Переведём с СИ объём: $12\,\mathrm{дм}^3=0,012\,\mathrm{m}^3$. Массу ручки найдем по формуле $m=\rho\cdot V$; $m_\mathrm{p}=600\,\mathrm{kг/m}^3\cdot 0,012\,\mathrm{m}^3=7,2\,\mathrm{kr}\cdot \Pi_0$ условию масса ручки составляет 1/6 всей массы топора. Значит, масса топора равна $6 \cdot 7,2$ кг = 43,2 кг. Следовательно, масса каменного тесла равна 43.2 кг - 7.2 кг = 36 кг.

2. 2) По условию ручка занимает половину объёма. Значит, объём камня такой же. Плотность

камня найдём по формуле
$$ho = \frac{m}{V};
ho_{\rm K} = \frac{36~{\rm K}\Gamma}{0.012~{\rm M}^3} = 3000~{\rm K}\Gamma/{\rm M}^3.$$

Ответ: масса ручки 7,2 кг, масса тесла 36 кг, плотность камня 3000 кг/м³.

10.

Известно, что «лошадиная сила» (л. с.) равна мощности 75 кгс · м/с $\approx 735 \, \mathrm{BT}$, а средний человек при длительной работе развивает мощность около 0,16 л. с. и кратковременно может превышать это ограничение. Человек, стараясь после отключения электричества в сети осветить своё жилище, используя электрогенератор с механическим приводом с КПД $\eta = 65\%$, вращает ротор генератора через редуктор за ручку, находящуюся на расстоянии R = 0.35 м от оси, со скоростью n = 30 об/мин, прикладывая к ручке силу F = 90 H.

Сможет ли он долго поддерживать горение лампочки накаливания мощностью $P=60\,\mathrm{Br}$, и не перегорит ли она от перенапряжения (лампочка рассчитана на номинальное напряжение 220 В, но не более 235 В, а напряжение генератора прямо пропорционально скорости вращения ротора)?

Решение. КПД генератора с механическим приводом равен отношению его электрической мощности к механической мощности, развиваемой человеком:

$$\eta = rac{P_{\scriptscriptstyle {
m BJI}}}{P_{\scriptscriptstyle {
m Mex}}}.$$

Механическая мощность, развиваемая человеком, в условиях задачи равна
$$P_{\text{Mex}} = F \cdot 2\pi n \cdot R \approx 90 \cdot 6,28 \cdot \frac{30}{60} \cdot 0,35 \approx 98,9 \,\, \text{Bt},$$

а электрическая мощность генератора $P_{\text{эл}} = \eta P_{\text{мех}} \approx 64.3 \text{ Bt},$ что достаточно для питания лампочки мощностью 60 Вт. Напряжение питания будет при этом повышено до

$$220 \cdot \sqrt{\frac{64,3}{60}} \approx 228 \text{ B},$$

так что лампочка не перегорит.

Средняя механическая мощность человека при длительной работе равна по условию 0,16 л. с. \approx 117,6 Вт, так что человек сможет долго освещать своё жилище, не перенапрягаясь.

Ответ: Сможет.

11.

Учитель на занятии физического кружка поручил Коле проверить, можно ли считать, что у подсолнечного и у моторного масла одинаковая удельная теплоёмкость. Коля посмотрел в теплоёмкость моторного удельная диапазоне $c_{\text{справ}} = (1,6 \div 1,7) \, \text{кДж/(кг} \cdot ^{\circ}\text{C})$, удельную теплоёмкость подсолнечного масла Коля решил Для этого он в подсолнечное масло массой $m_{\rm M} = 175 \, \Gamma$ при температуре $t_{\rm K} = 20.0$ °C налил кипящую воду массой $m_{\rm B} = 220\,\rm r$. Затем Коля попытался измерить установившуюся температуру воды с маслом. Но, к сожалению, Коле удалось измерить установившуюся температуру крайне неточно — он получил значение $t=81\pm5$ °C. Удельная теплоёмкость воды равна $c_{\rm B}=4200\,{\rm Дж/(kr\cdot °C)}$.

- 1) Какое количество теплоты отдала вода маслу, если считать, что установившаяся температура равна 81 °C точно?
- 2) Какова удельная теплоёмкость подсолнечного масла, если считать, что установившаяся температура известна точно?
- 3) Можно ли утверждать, что удельная теплоёмкость подсолнечного масла попадает в диапазон табличных значений удельной теплоёмкости моторного масла? Для ответа на этот вопрос рассчитайте, в каком диапазоне значений может находиться удельная теплоёмкость подсолнечного масла, которая получается по результатам проведённого эксперимента.

Напишите полное решение этой задачи.

Решение. 1) Количество теплоты, отданное водой:

$$Q = c_{\text{в}} m_{\text{в}} (t_{\text{кип}} - t) = 17556 \, \text{Дж}.$$

2) Удельная теплоёмкость масла:

$$c_{ ext{M}} = rac{Q}{m_{ ext{M}}(t - t_{ ext{K}})} = 1645$$
Дж/(кг·°С).

3) Удельная теплоёмкость подсолнечного масла может быть рассчитана по формуле $c_{\scriptscriptstyle \mathrm{M}} = \frac{c_{\scriptscriptstyle \mathrm{B}} m_{\scriptscriptstyle \mathrm{B}}(t_{\scriptscriptstyle \mathrm{KU\Pi}}-t)}{m_{\scriptscriptstyle \mathrm{M}}(t-t_{\scriptscriptstyle \mathrm{K}})}.$ Подставим в эту формулу минимально и максимально возможные

формуле $m_{\rm M}(t-t_{\rm K})$ Подставим в эту формулу минимально и максимально возможные конечные температуры. Диапазон возможных значений удельной теплоёмкости масла составляет (1,12 ÷ 2,26) кДж/(кг \cdot °С), что существенно шире диапазона табличных значений для моторного масла. Следовательно, утверждать равенство удельных теплоёмкостей подсолнечного и моторного масел на основе проведённого эксперимента нельзя.

Ответ: 1) Q=17556 Дж; 2) $c_{\rm M}=1645$ Дж/(кг · °С); 3) (1,12 ÷ 2,26) кДж/(кг · °С), нельзя.